

engage | educate | entertain

Fit for recycling – How inks enable a Circular Economy

German Paint and Printing Ink Associations Represented by Ewald Rempel (Sun Chemical) & Alina Marm (Siegwerk)

What we want....

Recycling of plastic waste with the least loss of material value → high quality recyclates

Foto credits: Siegwerk, https://www.awg-info.de/privatkunden/gelber-sack

What we get...

Recyclates that are not fit for broad use

Quality impairment of PCR¹

Caused by contaminants like food residues, adhesives, barrier materials, inks, etc.

- Odor
- Gel particles, black spots
- Mechanical properties
- Discoloration
- Color fluctuations
- Optical uniformity
- Haze

1. Qualitative assessment, depending on the target application

Source: Recycling of flexible packaging - heat stable inks and deinking I Dec 2022

Circular Economy and Recycling – a fast moving topic

The Life Circle Assessment perspective of inks in packaging

Supporting the move to monomaterials

Quo Vadis Nitrocellulose?

De-inking for high quality recyclate

Driving forces of a circular economy

Circular Economy

Life Cycle Assessment

What is Life Cycle Assessment?

- Life Cycle Assessment (LCA) is a systematic method for evaluating the environmental impacts of a product, process, or activity throughout its entire life cycle
- LCA considers various environmental aspects, such as resource depletion, energy consumption, greenhouse gas emissions, and other pollutants
- LCA helps identify areas where improvements can be made to minimize environmental harm and optimize sustainability - but is often lacking (but improving)

Life Cycle Assessment (LCA) vs. Product specific assessment

Two different options to determine the environmental impact of a product

• Must cover the full life cycle of a product

drupa cube

- Printing inks are not manufactured for direct use by end customer
- Product use phase & end of life are mainly unknown for printing ink manufacturer

- Focussing only on the steps in the life cycle related to the ink manufacturing (direct impact)
- Enable customers to calculate their own product related environmental impact
- "Cradle-to-gate" approach

Cradle-to-gate approach

- Enables the printing ink manufacturer to control the environmental impact of stages in its own hand
 - Raw material supply (supplier firsthand data retrieval possible)
 - Own manufacturing process
- Enables customer to calculate their own environmental impact
- No double counting along the value chain
- Reflecting the ink manufacturing impact in the best possible way

Printing Ink manufactures in the value chain

The position of a printing ink manufacturer in the value chain is directly impacting the contribution of an ink to the footprint of the final product

Example: Value chain for packaging of filled goods

- · Printing ink producers are only a small piece of the long value chain
- Only ~2% of the finished product carbon footprint is the ink contribution
- Position: Middle of first half of the value chain

Circular Economy

Supporting the move to monomaterials

Why use Flexible Packaging structures?

- Price competitiveness
- Eye-Catcher presentation of the product advertisement
- Less weight and waste volume compared to glass or metal containers
- Barrier functions protecting the product light, moisture, oxygen, microbial activity, taste & smell, evaporation, physical containment

Complexity of packaging structures versus recycling

- Multimaterial packaging has lately become under pressure due to the combination of various materials with different properties like polymers, aluminum and inorganic barrier coatings
- Multimaterial packaging is therefore difficult to recycle in existing waste management infrastructures without a delamination step before de-inking and granulation
- A reduction of material complexity would most likely cause a shorter shelf-life, especially of food products
- The trend points towards monomaterial structures based on Polyolefin substrates in combination with suitable barrier coatings like SiOx and AlOx which are fully compatible in the recycling stream

Typical Flexible Packaging Components

Barrier Properties of Packaging structures

Monomaterials

Disadvantages

•

PA

Typical substrates: PE, PP, PET and PA

Advantages

٠

- Easy to recycle (after de-
- inking)
- No need for de-lamination
- Good moisture
 barrier
- Flexible

drupa cube

 PET and PA not compatible with Polyolefin recycling stream

Poor gas barrier though

properties are increasing

with polymer density $PE \rightarrow$

Coated Polyolefins

Typical substrates: BoPP coated with Acrylic, EVOH or PVdC

Advantages

- **D**isadvantages
- Very high moisture barrier
- Very high O2 barrier
- Good aroma barrier
- Crack resistant

- Problematic for recycling reduces quality of the recyclate (yellowing)
- PVdC may release carcinogenic dioxines when heated during extrusion of recyclate

Ceramic coating

Typical substrates: PET, BoPP, PA

Advantages

- Disadvantages
- Generally, very high allround barrier properties
- Fully compatible in recycling stream
- Not detected by metal detectors
- Suitable for microwave

drupa cube

- Not crack resistant (glass like) – potential loss of barrier properties
- AlOx can be challenging to overprint
- SiOx can be difficult to laminate
- Cost

Metallization

Typical substrates: PET, BoPP

Advantages

Disadvantages

- Generally, very high allround barrier properties
- Light barrier
- Improved optical aspects

- Not separable during recycling causing discolouration of recyclate
- Detected by metal detectors
- Not suitable for microwave

Multilayers

Typical substrates: Combination of different materials and barrier coatings

Advantages

Disadvantages

- Generally, very high allround barrier properties
- Tailored design for very specific needs
- Protection of barrier coatings

- Not fully recyclable without prior de-lamination into monomaterials
- Need for de-lamination primer

Quo Vadis Nitrocellulose?

Practical solutions in a changing market environment

What is nitrocellulose?

- Nitrocellulose (NC) is a common binder system used in solvent-based printing inks and varnishes for Flexible Packaging to a very large extend
- In flexo and gravure printing this technology covers approximately more than 80% of the entire market for solventbased inks in Europe

Printing inks for Flexible Packaging

Typical binder systems and their properties – pros and cons

drupa cube

engage | educate | entertain

Binder	NC, NC/PU	PVB	PVC	PU	
Gravure printability	\odot	\odot	\odot	\odot	Binders account for around 10-20% of a solvent-based
Flexo printability	\odot		$\overline{\mathfrak{S}}$	\odot	
Pasteurisation		\odot	\odot	\odot	
Sterilisation	$\overline{\mathfrak{S}}$	\odot	\odot	\odot	ink
Range of substrates (adhesion)	universal	universal	universal	very universal	
Printing speed	very high	high	very high	very high	NC is a very
Surface printing	\odot	$\overline{\mathfrak{S}}$	$\overline{\mathfrak{S}}$	$\overline{\mathfrak{S}}$	versatile binder
Lamination High Perfromance	$\overline{\mathfrak{S}}$	\odot	\odot	\odot	system with many
Lamination Medium perfromence	\odot	\odot	\odot	\odot	prosibul also a very
Lamination Standard Performance	\odot	\odot	\odot	\odot	Strong con
Mechanical recycling	$\overline{\mathfrak{S}}$	\odot	$\overline{\boldsymbol{\varTheta}}$	\odot	

NC = nitrocellulose PU = polyurethane PVC = polyvinlyl chloride PVB = polyvinyl butyral

The future of NC inks

Physical Recycling

The future of NC inks

Current ink binders flexible packaging

Flexo printing:

• 90% Nitrocellulose (NC)

Gravure printing:

• 75% NC

drupa cube

25% PVB, PVC and **PU** for high temperature (sterilization 120–130°C) applications

Upcoming / new regulations

- German "Minimum Standard"
 Large format PE laminates printed with NC are not compatible with German recycling system;
 but: no legal or financial consequences
- Packaging & Packaging Waste Regulation (EU) By 2030 all packaging must be recyclable – non-recyclable packaging will be banned Criteria will be defined ("delegated acts")
 - Design for recycling (D4R) criteria by European Standard (CEN Institute) Anticipated for 2027
 - Ceflex and RecyClass
 D4R guideline amendment expected for Q4
 Q1 2024 based on ongoing scientific evaluation

Check and rephrase

The future of NC inks

Conclusion

- We will get some kind of specific D4R criteria for inks ('Mindeststandard', RecyClass, Ceflex, CEN, PPWR) in the future
- Criteria and details to need to be defined

Good news: There are potential alternatives available

- Alternative binders (PU, PVB)
- Modified mechanical recycling process: Deinking instead of "only" cold-washing

De-inking for creating high quality recyclates

PU-ink systems are better suited for mechanical recycling, but it is not a silver bullet

Optical appearance of extruded film based on printed material	Qualitative overview impact binder			
PE reference	Property	General purpose NC-ink	Heat-stable PU-ink	
Nitrocellulose, white	Gassing during extrusion	Not ok	Ok	
	Odor recyclate	Not ok	Ok	
Polyurethane, white	Gel particles, mechanical properties	Not ok	Not ok – Ok	
Nitrocellulose, CMYK (std. pigments)	Discoloration recyclate	Not ok	Not ok	
Polyurethane, CMYK (HPP)	Suitable for food contact (FCM)	Νο	No	

drupa cube

De-inkable solutions allow production of colorless recyclates from printed Post Consumer Waste (PCW)

Source: Recycling of flexible packaging - heat stable inks and deinking I Jul 2023

engage | educate | entertain

Making packaging de-inkable

Systematic de-inking studies of all relevant print structures on-going

drupa cube

| educate | entertain

- De-inking of any structure possible, but can require **too harsh conditions** for cost-efficient industrial application (time, temperature, chemicals)
- 1K SB inks proven to be optimal for deinking
- De-inking primers allow for de-inking of most inks
- De-inking primers can delaminate, extending the range of de-inking possibilities

Delamination/de-inking primers ensure smooth de-inking of reverse-printed structures

De-inking/de-laminatio can be combined with printed coatings for barrier

engage | educate | entertain

De-inking is emerging in the market, but needs application at scale

1: Link to CEFELX: <u>CEFLEX 'Quality Recycling Process' - CEFLEX2</u>: Link to Coveris PR: <u>Coveris opens new ReCover recycling</u> facility with pioneering technology | Coveris; 3: Huthamaki Annual Report, 2022, p. 165; 4: Siegwerk

Driving forces of a circular economy

Key Success Factors

Circular Design

Produce & Manufacture

Consume

Collect, Sort & Recycle

Circular Economy and Recycling – a fast moving topic

Activities on regulatory level

- Packaging and Packaging Waste Regulation
- CEN Working group Design for recycling for plastic packaging products
- Global regulatory trends

Activities on Industry level

- CEFLEX
- RecyClass
- APR

Market movement

Thank you!

www.WirSindFarbe.de